

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный технический университет» (ФГБОУ ВО «СамГТУ»)

УТВЕРЖДАЮ

Первый проректор – проректор по учебной работе Овчинников Д.Е. «29» августа 2025 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «ТРУД (ТЕХНОЛОГИЯ).

ОСНОВЫ ТРЁХМЕРНОГО МОДЕЛИРОВАНИЯ И 3D-ПЕЧАТИ» (стартовый уровень)

Направленность программы: техническая

Возраст обучающихся: 12-14 лет (7 класс)

Срок реализации: 1 год Язык обучения: русский

Самара 2025 г.

Настоящая дополнительная общеобразовательная общеразвивающая программа «Труд (технология). Основы трёхмерного моделирования и 3D-печати» (далее – программа) является собственностью ФГБОУ ВО «Самарский государственный технический университет».

Настоящая программа не может быть полностью или частично воспроизведена, тиражирована и распространена в качестве официального издания без разрешения ФГБОУ ВО «Самарский государственный технический университет».

СОДЕРЖАНИЕ

Раздел 1. Пояснительная записка
1.1. Направленность программы
1.2. Уровень программы
1.3. Актуальность программы
1.4. Отличительные особенности программы
1.5. Новизна программы
1.6. Формы обучения и реализации
1.7. Цель программы
1.8. Задачи программы
1.9. Планируемые результаты обучения
1.9.1. Предметные образовательные результаты
1.9.2. Личностные результаты
1.9.3. Метапредметные результаты
1.10. Категория обучающихся
1.11. Режим занятий
1.12. Трудоемкость программы
Раздел 2. Содержание программы
2.1. Учебный план
2.2. Календарный учебный график
2.3. Рабочая программа
Раздел 3. Формы аттестации и оценочные материалы
Раздел 4. Организационно-педагогические условия реализации программы
4.1 Список литературы
Раздел 5. Воспитательная направленность программы

Раздел 1. Пояснительная записка

- 1.1. Направленность программы: техническая.
- 1.2. Уровень программы: стартовый.
- 1.3. Актуальность программы

задач, Программа нацелена на решение определённых Федерального закона «Об образовании в Российской Федерации» от 29 декабря 2012 г. № 273-ФЗ, Федерального закона от 19 декабря 2023 г. №618-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации», Федерального государственного образовательного основного общего образования, утвержденного приказом Минпросвещения России от 31 мая 2021 г. № 287 «Об утверждении федерального государственного образовательного стандарта основного общего образования» (далее – ФГОС ООО), Федеральной образовательной программы основного общего образования. утвержденной приказом Минпросвещения России от 18 мая 2023 г. № 370» «Об утверждении федеральной образовательной программы основного общего образования» (далее – ФОП ООО), приказа Минпросвещения России от 19 марта 2024 г. № 171 «О внесении изменений в некоторые приказы Министерства Российской Федерации, касающиеся федеральных образовательных программ начального общего образования, основного общего образования и среднего общего образования».

Программа интегрирует знания по разным учебным предметам и является одной из базовых для формирования у обучающихся функциональной технологической грамотности, технико-технологического, проектного, креативного и критического мышления на основе практико-ориентированного обучения и системно-деятельностного подхода в реализации содержания, воспитания осознанного отношения к труду, как созидательной деятельности человека по созданию материальных и духовных ценностей.

Программа представлена инвариантной частью, состоящей из пяти модулей, которые знакомят обучающихся с различными технологиями, в том числе материальными, информационными, коммуникационными, когнитивными, социальными. В рамках освоения программы происходит приобретение базовых навыков работы с современным технологичным оборудованием, освоение современных технологий, знакомство с миром профессий, самоопределение и ориентация обучающихся в сферах трудовой деятельности.

Программа раскрывает содержание, адекватно отражающее смену жизненных реалий и формирование пространства профессиональной ориентации самоопределения личности, в том числе: компьютерное черчение, технологии промышленный дизайн, 3D-моделирование, прототипирование, цифрового производства В области обработки материалов, аддитивные робототехника технологии, нанотехнологии, И системы автоматического технологии электротехники, электроники и электроэнергетики, управления; строительство, транспорт, агро- и биотехнологии, обработка пищевых продуктов.

Физическое изготовление спроектированных изделий с использованием технологий быстрого прототипирования (в основном, 3D-печати) является содержанием неотъемлемой частью занятий, главным курса остается систематическое освоение приемов возможностей твердотельного И параметрического 3D-моделирования. В целях развития умений и навыков уделено рефлексивной деятельности особое внимание формирование способности обучающихся самостоятельно организовывать свою учебную деятельность (постановка цели, планирование, определение оптимального соотношения цели и средств и другое), оценивать её результаты, определять причины возникших трудностей и пути их устранения, осознавать сферы своих интересов и соотносить их со своими учебными достижениями, чертами своей личности. Данная программа позволяет раскрыть творческий потенциал обучающихся в процессе выполнения практических и проектно-исследовательских работ, создаёт условия для дальнейшей профориентации обучающихся.

Программа конкретизирует содержание учебных модулей инвариантной части, предметные, метапредметные и личностные результаты, дает представление о формах и видах контроля, аттестации обучающихся, раскрывает направленность воспитательной работы с учениками в течение всего периода обучения. Педагогическая целесообразность программы состоит в том, что в проектной и исследовательской деятельности у подростков формируются знания, умения и навыки, играющие важнейшую роль на протяжении всей жизни человека; развиваются общие способности, формируются психологическая готовность к труду, ответственное и осознанное отношение к выбору профессии.

Стратегическим документом, определяющими направление модернизации содержания и методов обучения по программе, является ФГОС ООО и нормативно-правовыми документы, в которых нашли отражения изменения, относящиеся к подходу и содержании программы учебного предмета «Труд (технология)» в общеобразовательной школе.

1.4. Отличительные особенности программы

Отличительная особенность программы обусловлена государственным социальным заказом, запросом образовательной организации и родительского сообщества с целью удовлетворения интеллектуальных потребностей и развития познавательного интереса учащихся в рамках учебного предмета «Труд (технология)». Программа соответствует основным направлениям социально-экономического развития страны и региона, современным достижениям науки, техники, искусства и культуры.

Программа направлена на получение обучающимися технологического образования с учетом имеющейся материально-технической базы СамГТУ на основе современных образовательных технологий. Технологическое образование обучающихся носит интегративный характер и строится на неразрывной взаимосвязи с трудовым процессом, создает возможность применения научнотеоретических знаний В преобразовательной продуктивной обучающихся реальные трудовые отношения включения В процессе деятельности, воспитания культуры личности созидательной во всех ее проявлениях (культуры труда, эстетической, правовой, экологической, технологической и других ее проявлениях), самостоятельности, инициативности, предприимчивости, развитии компетенций, позволяющих обучающимся осваивать новые виды труда и сферы профессиональной деятельности.

Программа ориентирована на использование в образовательном процессе проектного и половозрастного подходов, также ориентирована на уровень общеучебной подготовки обучающихся (адаптивность к уровню знаний учащихся): материал адаптирован к потребностям каждого ученика и обеспечивает индивидуализацию обучения. В ходе освоения программы обучающиеся получают возможность использовать современные технологии моделирования и 3D-печати. Формируются у обучающихся навыки проектной деятельности в процессе разработки и защиты индивидуального проекта, который подростки презентуют на последнем занятии курса.

1.5. Новизна программы

Новизна данной образовательной программы заключается в том, что обучение в инвариантной части программы проходит с использованием современных машин аддитивного производства, работающих по технологии FDM (создание объектов путем расплавления и экструзии пластиковой нити через сопло 3D-принтера), на которых обучающиеся могут получить новые навыки.

Все образовательные блоки предусматривают не только усвоение теоретических знаний, но и формирование деятельностно-практического опыта. Практические задания способствуют развитию у обучающихся творческих способностей.

Программа разработана для целевой аудитории обучающихся 7 классов в возрасте от 12 до 14 лет.

1.6. Формы обучения и реализации

Форма обучения: очная.

Форма реализации: с применением дистанционных образовательных технологий.

1.7. Цель программы

Цель программы - формирование технологической грамотности, творческого мышления. Формирование компетенций в области 3D-моделирования и 3D-печати, 3D-сканирования, изобретательства и инженерии; применение полученных предпрофессиональных компетенций на практике.

1.8. Задачи программы

Обучающие:

- сформировать умения и дать возможность приобрести опыт деятельности в предметной области «Труд (технология)»;
- сформировать навык использования в трудовой деятельности цифровых инструментов и программных сервисов, когнитивных инструментов и технологий;
- сформировать трудовые умения и углубить технологические знания по преобразованию материи, энергии и информации в соответствии с поставленными целями, исходя из экономических, социальных, экологических, эстетических критериев, а также критериев личной и общественной безопасности;
 - обучить принципам работы в ПО для 3D-моделирования;
 - обучить основам работы на 3D-принтере;

- обучить основам работы с 3D- сканером;
- сформировать представления об аддитивном производстве;
- обучить проектной технологии.

Развивающие:

- развивать умения оценивать свои профессиональные интересы и склонности в плане подготовки к будущей профессиональной деятельности, владение методиками оценки своих профессиональных предпочтений;
- содействовать развитию навыков самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- содействовать развитию образного, технического мышление и умение выразить свой замысел;
- содействовать стимулированию мотивации обучающихся к получению знаний, помогать формировать творческую личность ребёнка и умения работать в группе;
- способствовать развитию способности видеть взаимосвязь между компонентами.

Воспитательные:

- подготовить личности к трудовой, преобразовательной деятельности, в том числе на мотивационном уровне формирование потребности и уважительного отношения к труду, социально ориентированной деятельности;
- сформировать у обучающихся культуру проектной и исследовательской деятельности, готовность к предложению и осуществлению новых технологических решений;
- сформировать познавательный интерес, качества творческой и интеллектуальной личности с активной жизненной позицией;
- сформировать самостоятельность в приобретении новых знаний и практических умений;
- воспитывать высокую культуру труда обучающихся на личном примере;
- сформировать ценностные отношения друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

1.9. Планируемые результаты обучения

1.9.1. Предметные образовательные результаты

Предметные результаты освоения содержания модуля «Производство и технологии»:

Обучающиеся будут знать:

- примеры развития технологий;
- области применения технологий, понимать их возможности и ограничения;
- оценки условий и рисками применимости технологий с позиций экологических последствий;

Предметные результаты освоения содержания модуля «Компьютерная графика, черчение»:

Обучающиеся будут знать:

- основы инженерной графики
- основы чтения чертежа;

Предметные результаты освоения содержания модуля «3D-моделирование, прототипирование, макетирование»:

Обучающиеся будут знать:

- алгоритм создания 3D объектов
- принцип работы FDM-принтера;
- назначение основных узлов принтера;
- кинематические схемы, применяемые в 3D-принтерах;
- основные узлы FDM 3D-принтера;
- основные параметры печати;
- систему запуска и настройки 3D-принтер
- особенности работы в программах «слайсерах».

Предметные результаты освоения содержания модуля «Технологии обработки материалов»:

Обучающиеся будут знать:

- общие характеристики материалов для печати на FDM-принтера;
- экологические проблемы применения материалов;

Предметные результаты освоения содержания модуля «Робототехника»:

Обучающиеся будут знать:

• возможности применение 3D-печати в робототехнике.

1.9.2. Личностные результаты

- сформированы критическое отношение к информации и избирательность ее восприятия;
 - сформированы мотивы своих действий при выполнении заданий;
- развиты внимательность, настойчивость, целеустремленность, умение преодолевать трудности;
- приобщение к ценностям социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах;
- сформирована коммуникативная компетентность в общении и сотрудничестве с другими обучающимися.

1.9.3. Метапредметные результаты

В результате изучения программы на уровне основного общего образования у обучающегося будут сформированы познавательные универсальные учебные действия, регулятивные универсальные учебные действия, коммуникативные универсальные учебные действия.

Познавательные универсальные учебные действия.

Базовые логические действия:

• выявлять и характеризовать существенные признаки природных и рукотворных объектов;

- устанавливать существенный признак классификации, основание для обобщения и сравнения;
- выявлять закономерности и противоречия в рассматриваемых фактах, данных и наблюдениях, относящихся к внешнему миру;
- выявлять причинно-следственные связи при изучении природных явлений и процессов, а также процессов, происходящих в техносфере;
- самостоятельно выбирать способ решения поставленной задачи, используя для этого необходимые материалы, инструменты и технологии.

Базовые проектные действия:

- выявлять проблемы, связанные с ними цели, задачи деятельности; осуществлять планирование проектной деятельности;
- разрабатывать и реализовывать проектный замысел и оформлять его в форме «продукта»;
- осуществлять самооценку процесса и результата проектной деятельности, взаимооценку.

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания;
- формировать запросы к информационной системе с целью получения необходимой информации;
- оценивать полноту, достоверность и актуальность полученной информации; опытным путём изучать свойства различных материалов;
- овладевать навыками измерения величин с помощью измерительных инструментов, оценивать погрешность измерения, уметь осуществлять арифметические действия с приближёнными величинами;
 - строить и оценивать модели объектов, явлений и процессов;
- уметь создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- уметь оценивать правильность выполнения учебной задачи, собственные возможности её решения;
- прогнозировать поведение технической системы, в том числе с учётом синергетических эффектов.

Работа с информацией:

- выбирать форму представления информации в зависимости от поставленной задачи; понимать различие между данными, информацией и знаниями;
 - владеть начальными навыками работы с «большими данными»;
- владеть технологией трансформации данных в информацию, информации в знания.
 - регулятивные универсальные учебные действия Самоорганизация:
- уметь самостоятельно определять цели и планировать пути их достижения, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- уметь соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата,

определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

- делать выбор и брать ответственность за решение. Самоконтроль (рефлексия):
- давать адекватную оценку ситуации и предлагать план её изменения;
- объяснять причины достижения (недостижения) результатов преобразовательной деятельности;
- вносить необходимые коррективы в деятельность по решению задачи или по осуществлению проекта;
- оценивать соответствие результата цели и условиям и при необходимости корректировать цель и процесс её достижения.
 - умение принятия себя и других:
- признавать своё право на ошибку при решении задач или при реализации проекта, такое же право другого на подобные ошибки.

Коммуникативные универсальные учебные действия Общение:

- в ходе обсуждения учебного материала, планирования и осуществления учебного проекта;
- в рамках публичного представления результатов проектной деятельности; в ходе совместного решения задачи с использованием облачных сервисов;
- в ходе общения с представителями других культур, в частности в социальных сетях.

Совместная деятельность:

- понимать и использовать преимущества командной работы при реализации учебного проекта;
- понимать необходимость выработки знаково-символических средств как необходимого условия успешной проектной деятельности;
- уметь адекватно интерпретировать высказывания собеседника участника совместной деятельности;
- владеть навыками отстаивания своей точки зрения, используя при этом законы логики;
 - уметь распознавать некорректную аргументацию.
- сформировать умение ставить цель, планировать достижение этой цели;
- сформировать умение в сотрудничестве ставить новые учебные задачи;
- сформировать умение оценивать получившиеся результаты и соотносить их с изначальным замыслом, выполнять в последующем их корректировку.
- развить способность адекватно воспринимать оценку наставника и других обучающихся;
- развито умение осваивать способы решения проблем творческого характера в жизненных ситуациях;

• развить способность комплексно смотреть на компоненты и видеть взаимосвязь между ними.

1.10. Категория обучающихся

Возраст обучающихся по программе: 12-14 лет (обучающиеся 7 классов общеобразовательных организаций).

Наполняемость учебной группы: 14 человек.

1.11. Режим занятий

Режим занятий: 1 занятие в неделю, продолжительность 1 занятия: 2 академических часа.

1.12. Трудоемкость программы

Программа рассчитана на 1 учебный год, объем составляет 72 часа.1 академический час – 40 минут.

Раздел 2. Содержание программы 2.1. Учебный план

No			Колич	ество час	Фотис	
№ п/п	Название модуля	всего	теория	практика	Самост. работа	Форма контроля
1	Модуль 1 «Производство и технологии»	4	4	0	0	выполнение практических заданий
2	Модуль 2 «Компьютерная графика, черчение»	14	2	12	0	выполнение практических заданий
3	Модуль 3 «3D- моделирование, прототипирование, макетирование»	46	5	41	0	выполнение практических заданий
	Модуль 4 «Технологии обработки материалов»	6	2	4	0	выполнение практических заданий
	Модуль 5 «Робототехника»	2	2	0	0	выполнение практических заданий
	Итого:	72	15	57	0	

2.2. Календарный учебный график

Год обучения	Дата начала обучения по программе	Дата окончания обучения по программе	Всего учебных недель	Кол-во часов	Режим занятий
2025-2026	01.09.2025	31.05.2026	36	72	очный

2.3. Рабочая программа

Nº	Наименование	Содержание	Количество часо		СОВ
п/п	раздела (модуля),		Теория	Практика	Самост
	темы				работа
1	M	одуль 1 «Производство и т	ехнологи	И»	_
1.1	Тема 1.1 История развития аддитивных технологий. Инструктаж по технике безопасности.	Теория: Инструктаж по технике безопасности для обучающихся. Предпосылки появления, история создания и развитие аддитивных технологий. Основные понятия и определения. Технологии 3D-печати. Изобретательская ситуация и изобретательская задача. Противоречия. Приемы ТРИЗ.	2	0	0
1.2	Тема 1.2 Применения аддитивных технологий.	Теория: Технологии традиционного производства. Преимущества и недостатки аддитивных технологий. Аддитивные технологии в машиностроении, медицине, строительстве, искусстве.	2	0	0
	Итого по модулю 1.		4	0	0
2	Mo	дуль 2 «Компьютерная графи	ка, черчен	ие»	
2.1	Тема 2.1 Изучение интерфейса САПР КОМПАС-3D	Теория: Общие сведения о системе КОМПАС-3D основные понятия и терминология трехмерного моделирования. Практика: Обучение навигации в САПР КОМПАС-3D.	1	1	0
2.2	Тема 2.2 Инструменты эскиза и параметризации	Теория: Работа в режиме «Эскиз». Определения понятий инструментов параметризации.	1	5	0

	T	П			
		Практика: Выполнения			
		заданий в эскизном режиме			
		программы КОМПАС-3D.			
2.3	Тема 2.3 Создание	Практика: Моделирование			
	планиметрических	простейших геометрических	0	6	0
	фигур	фигур.			
	Итого по модулю 2.		2	12	0
3	Модуль 3 «3D	-моделирование, прототипир	ование, ма	акетировани	e»
3.1	_	Теория: Общие сведения об		-	
		операции «Элемент			
		выдавливания». Основные			
		параметры настройки			
	Тема 3.1 Элемент	операции.			
	выдавливания в	Практика: Выполнение	1	5	0
	САПР КОМПАС-3D	отдельных заданий в			
		эскизном и твердотельном			
		-			
		режиме программы			
2.0		КОМПАС-3D.			
3.2		Теория: Общие сведения об			
		операции «Элемент			
		вращения». Основные			
	Тема 3.2 Элемент	параметры настройки			
	вращения в САПР	операции.	1	5	0
	КОМПАС-3D	Практика: Выполнение			
	KOWI IAO-3D	отдельных заданий в			
		эскизном и твердотельном			
		режиме программы			
		КОМПАС-3D.			
3.3		Практика: Построение			
	T 2.2 Fl	моделей по изометрическим			
	Тема 3.3 Построение	чертежам, через построения			
	моделей по	эскизов и последующего	0	6	0
	изометрическим	использования операций	_	-	
	чертежам	«Элемент выдавливания»			
		и/или «Элемент вращения».			
3.4		Практика: Построение			
0.1		моделей по чертежам, через			
		построения эскизов и			
	Тема 3.4 Построение	последующего			
	моделей по	использования операций			
	чертежам. Экскурсия		0	6	0
	в структурное	• •	U	U	'
	подразделение	и/или «Элемент вращения».			
	СамГТУ	Экскурсия на предприятие			
		(структурное подразделение			
		СамГТУ) в рамках			
		профориентации.			
3.5	Тема 3.5 Запуск и	Теория: Общие требования			
	наладка 3D-принтера	безопасности при работе с	1	7	0
	по технологии FDM.	3D-принтером. Требования			
-					

3.7	Тема 3.7 Подготовка моделей к печати в программной среде Polygon X.	Влияние основных параметров печати на качество поверхности, прочность, вес, время печати изделия. Теория: Знакомство с интерфейсом программы Роlygon X. Основное меню программы. Практика: Импорт модели. Изучение и отработка основных операций редактирования моделей в рабочей области: перемещение, вращение,	1	7	0
3.6	Тема 3.6 Программное обеспечение для работы с FDM- принтером	Теория: Основы числового программного управления (ЧПУ) станками. Машинный код (g-code). ПО для работы с FDM-принтером. Практика: Основные параметры 3D-печатных изделий: высота слоя, периметры, базовые и верхние сплошные слои, внутренне заполнение, поддерживающие структуры.	1	5	0
		безопасности перед, во время и после работы. Требования безопасности в аварийных ситуациях. Изучение инструкции по эксплуатации 3D-принтера. Практика: Запуск, контроль состояния во время работы, выключение 3D-принтера. Отработка действий при возникновении аварийной ситуации. Изучение приборов управления 3D-принтером. Ручное перемещение по осям. Нагрев сопла экструдера, нагрев стола. Заправка пластика, выгрузка пластика. Калибровка 3D-принтера.			

		авторасстановка моделей.			
		Настройка параметров			
		печати: высота слоя,			
		периметры, базовые и			
		верхние сплошные слои,			
		внутренне заполнение,			
		обдув детали. Изучение			
		вспомогательных структур			
		при печати моделей.			
		Скорость печати. Порядок			
		настройки параметров			
		печати. Методы усиления			
		адгезии детали к рабочей			
		поверхности. Создание			
		поддерживающих структур.			
		Печать изделий.			
	Итого по модулю 3.		5	41	0
4	Мод	уль 4 «Технологии обработки	и материал	10B»	
4.1	Тема 4.1 Материалы	Теория: Материалы для 3D-	-		
	для 3D-печати	печати. Особенности и	2	0	0
		область применения.			
4.2	Тема 4.2	Практика: Порядок			
	Постобработка	обработки 3D-печатных			
	напечатанных	изделий. Изучение			
	моделей	оборудования и			
		инструментов для обработки			
		изделий механическим		4	0
		способом: напильники,			_
		стамески, наждачная бумага,			
		граверы. Техника			
		безопасности и культура			
		труда при работе.			
	Итого по модулю 4.	груда при рассто.	2	4	0
5	иного по шодулю п	Модуль 5 «Робототехні		•	
5.1	Тема 5.1	Теория: Применение 3D-			
". '	Коллаборация 3D-	печати в робототехнике,			
	печати и	повторение этапов			
	робототехники.	реализации проектов.			
	Разработка и защита	Практика: техническая			
	индивидуального	реализация проекта.	0	2	0
	проекта.	Подготовка выступления и	U	2	U
	проекта.				
		презентации результатов			
		проектной деятельности.			
		Обсуждение результатов			
		обучающихся.	•	•	•
	Итого по модулю 4.		0	2	0

Раздел 3. Формы аттестации и оценочные материалы

Промежуточный контроль результатов проектной деятельности осуществляется по следующим диагностикам: выполнение индивидуальных и групповых практических заданий, представление итогов выполненных групповых заданий, выполнение индивидуального творческого проекта, дискуссия.

Формы контроля для выявления личностных качеств:

Входной контроль: беседа;

Текущий контроль: беседа, опрос, выполнение практических заданий, наблюдение.

Промежуточная аттестации: выполнение творческого задания.

Итоговая аттестация: разработка индивидуального проекта.

Оценочные материалы

Для того, чтобы оценить уровень усвоения программы, используются следующие методы диагностики: наблюдение, анкетирование (рефлексия), выполнение практических заданий, презентация результатов исследования и модели.

Применяется трёхуровневая система оценки знаний, умений и навыков обучающихся: низкий уровень усвоения программы, средний уровень, высокий уровень.

Уровень усвоения	Числовой показатель	Характеристика /содержание
программы	объема усвоенного	уровня
обучающимся	программного материала,	71
, .	предусмотренного учебным	
	планом, %	
1. Высокий	70 -100	Обучающийся работает с
		оборудованием самостоятельно, не
		испытывает особых трудностей;
		планирует и выполняет
		экспериментальные задания с
		элементами творчества; свободно
		владеет теоретической
		информацией по курсу, умеет
		анализировать полученные
		результаты эксперимента и на
		основе анализа делать выводы,
		способен применять полученную
		информацию на практике.
2. Средний	69 - 50	Обучающийся работает с
		учебным материалом с помощью
		педагога; в основном, выполняет
		задания на основе образца;
		удовлетворительно владеет
		теоретической информацией,
		может отбирать оборудование
		самостоятельно и проводить
		простейшие эксперименты.
3. Низкий	49 и менее	Обучающийся испытывает
		серьёзные затруднения при работе
		с учебным материалом; в состоянии

	выполнять	ЛИШЬ	простейшие
	практические	задания	я, провести
	простейший		физический
	эксперимент.		

Раздел 4. Организационно-педагогические условия реализации программы

В программе применяется системно-деятельностный подход к организации и реализации образовательного процесса, а также компетентностный для развития познавательных способностей обучающихся и формирования знаний, умений, навыков и компетенций в предметной области труд (технология) используются педагогические технологии:

- технология личностно-ориентированного обучения (изучение нового материала возможно при условии достаточного уровня знаний, умений, навыков предыдущего материала);
 - технология проектного обучения;
 - технология развития критического мышления;
 - технологии развивающего обучения;
 - здоровьесберегающие технологии;
 - ИКТ.

Формирование у обучающихся функциональной технологической грамотности, технико-технологического, проектного, креативного и критического мышления осуществляется на основе практико-ориентированного обучения и системно-деятельностного подхода в реализации содержания инвариантных и вариативных блоков (модулей) программы, воспитания осознанного отношения к труду, как созидательной деятельности человека по созданию материальных и духовных ценностей.

Количество часов ПО инвариантным «Основы 3Dмодулям: моделирования», «Технология моделирования методом послойного наплавления (FDM)», «Проектная работа», были перераспределены с учетом запросов представителей) обучающихся, потребностей родителей (законных обучающихся, востребованности познавательных интересов специалистов на рынке труда Самары и области, в России, стратегическими национальными приоритетами в экономике, промышленности на период до 2030 ГГ.

Основной методический принцип программы: освоение сущности и структуры технологии неразрывно связано с освоением процесса познания – построения и анализа разнообразных моделей.

Программа построена по модульному принципу, состоит из логически завершенных блоков (модулей) учебного материала, позволяющих достигнуть конкретных образовательных результатов, и предусматривает разные образовательные траектории ее реализации, включает обязательные для изучения инвариантные модули, реализуемые в рамках, отведенных на учебный предмет часов.

В рамках реализации программ ЦРСК и образовательная организация совместно разрабатывают и утверждают ДООП. Для реализации

образовательных программ образовательная организация предоставляет кадровые ресурсы – педагогов-кураторов. Педагоги-кураторы от образовательной организации:

- сопровождают обучающихся во время учебного процесса;
- принимают участие в реализации образовательного процесса в малых группах;
- присутствуют на занятиях и обеспечивают учёт и документирование результатов освоения обучающимися модулей образовательной программы;
- совместно с педагогами ЦРСК проводят оценивание результатов достижений обучающихся.

Занятия проходят в учебной аудитории, оснащенной достаточными рабочими местами для проведения занятий лекционного и практического типа. Во время занятий обеспечивается доступ к сети Интернет.

Материально-техническая база для обучения:

- 1. 3D-принтера, работающий по технологии FDM
- 3D-принтера для работы с различными материалами.
- Необходимое оборудование для поддержки работы 3D-принтера: компьютер с соответствующим ПО, драйвера и контроллеры.
 - 2. Компьютерное оборудование
- Персональные компьютеры или ноутбуки, совместимые с программой КОПАС-3D и Polygon X.
- Периферийные устройства: принтеры, сканеры для работы с эскизами и проектами.
 - 3. Программное обеспечение
 - Лицензия на КОПАС-3D: актуальная версия графического редактора.
 - Программа Polygon X для подготовки 3D-моделей к печати.
 - 4. Материалы для 3D-печати
 - Разноцветные пластики PLA и PETG.
 - Расходные материалы: наждачная бумага различной зернистости.
 - 5. Оснащение рабочего места
 - Элементы безопасности: защитные очки, маски и перчатки.
- Мебель: столы для работы, стулья, место для хранения материалов и инструментов.
 - 6. Методические материалы
 - Учебные пособия и руководства по проектированию в КОПАС-3D.
- Видеоуроки и демонстрации, иллюстрирующие работу на 3D-принтере и в программе.
 - 7. Интернет-ресурсы
- Доступ к обучающим платформам и онлайн-курсам по 3D-печати и 3Dмоделированию.

4.1 Список литературы

1. Зленко М.А. Аддитивные технологии в машиностроении / М.В. Нагайцев, В.М. Довбыш // пособие для инженеров. – М. ГНЦ РФ ФГУП «НАМИ» 2015. 220 с.

- 2. Ракова М. и др. Учимся шевелить мозгами. Общекомпетентностные упражнения и тренировочные занятия. // сборник методических материалов. М.: Фонд новых форм развития образования, 2019. –142 с.
- 3. Технология : 5–9-е классы : методическое пособие к предметной линии Е. С. Глозман и др. / Е. С. Глозман, Е. Н. Кудакова. Москва : Просвещение, 2023. 207, [1] с.
- 4. Технология, 7 класс/ Тищенко А.Т., Синица Н.В., Общество с ограниченной ответственностью Издательский центр «ВЕНТАНА-ГРАФ»; Акционерное общество «Издательство «Просвещение»
- 5. Тимирбаев Д.Ф. Хайтек тулкит // сборник методических материалов. 2-е изд., перераб. и доп. М.: Фонд новых форм развития образования, 2019 76 с.
- 6. Федеральная рабочая программа основного общего образования «Труд (технология) (для 5–9 классов образовательных организаций) с изменениями в соответствии с приказом Министерства просвещения Российской Федерации от 19.03.2024 № 171 «О внесении изменений в некоторые приказы Министерства просвещения Российской Федерации, касающиеся федеральных образовательных программ начального общего образования, основного общего образования и среднего общего образования.

Раздел 5. Воспитательная направленность программы

Целями воспитательной деятельности являются создание условий для развития, саморазвития и самореализации личности обучающихся через реализацию учебного проекта. Учебные занятия по программе создают условия для группового взаимодействия, необходимости общения участников группы, постановки учебных целей как индивидуальных, так и командных, через взаимодействие в группе формируется социальный опыт и формируется принятая в российском обществе система национальных ценностей.

Содержание программы связано с достижениями задач воспитания (в широком значении этого слова), в частности, с воспитания культуры личности во всех ее проявлениях (культуры труда, эстетической, правовой, экологической, технологической и других ее проявлениях), самостоятельности, инициативности, предприимчивости, развитии компетенций, позволяющих обучающимся осваивать новые виды труда и сферы профессиональной деятельности.

Реализация индивидуального проекта способствует формированию навыков творческого решения задач, требующих технического и творческого мышления, развитию эстетического вкуса. Соблюдение требований правил по работе с компьютером сформирует потребность к ведению здорового образа жизни.

Реализация воспитательного потенциала программы представляет собой совместную деятельность педагога и обучающегося как инструмент целевого формирования у него способности осваивать социокультурные ценности, технологии развития личности, определяющие механизм ее самореализации, составляющие общекультурный эмоционально значимый для подростка фон по освоению предметного содержания и приобретения социального опыта.

Специфические воспитательные задачи - воспитание творческой активности, выражающийся в способности преобразовать структуру объекта, склонности к творческой деятельности, формирование образного мышления.

Освоение этики, опирающейся на соответствующую мотивацию в нравственном «поле» личности. Создание условий для формирования обучающимися необходимого в жизни и обществе социального опыта и формирования принимаемой обществом системы ценностей, создание условий для многогранного развития и социализации каждого учащегося.

Приоритетные направления воспитательной деятельности является воспитание положительного отношения к труду и творчеству — соответствует организации трудовой и профориентационной деятельности обучаемых, воспитание культуры труда, социально-экономическое просвещение подростков.

Профориентационное воспитание – соответствует формированию у обучающихся ГОТОВНОСТИ самостоятельно планировать И реализовывать перспективы персонального образовательно-профессионального маршрута в свободы выбора профиля обучения сферы будущей условиях профессиональной деятельности в соответствии со своими возможностями, способностями и с учетом требований рынка труда.

Приоритетные направления воспитательной деятельности: *патриотического воспитатия:*

- проявление интереса к истории и современному состоянию российской науки и технологии;
- ценностное отношение к достижениям российских инженеров и учёных; гражданского и духовно-нравственного воспитания:
- готовность к активному участию в обсуждении общественно значимых и этических проблем, связанных с современными технологиями, в особенности технологиями четвёртой промышленной революции;
- осознание важности морально-этических принципов в деятельности, связанной с реализацией технологий;
- освоение социальных норм и правил поведения, роли и формы социальной жизни в группах и сообществах, включая взрослые и социальные сообщества; эстемического воспитания:
- восприятие эстетических качеств предметов труда;
- умение создавать эстетически значимые изделия из различных материалов;
 понимание ценности отечественного и мирового искусства, народных традиций и народного творчества в декоративно-прикладном искусстве;
- осознание роли художественной культуры как средства коммуникации и самовыражения в современном обществе;

ценности научного познания и практической деятельности:

- осознание ценности науки как фундамента технологий;
- развитие интереса к исследовательской деятельности, реализации на практике достижений науки;

формирования культуры здоровья и эмоционального благополучия:

- осознание ценности безопасного образа жизни в современном технологическом
- мире, важности правил безопасной работы с инструментами;
- умение распознавать информационные угрозы и осуществлять защиту личности от этих угроз;

- трудового воспитания:
- уважение к труду, трудящимся, результатам труда (своего и других людей); ориентация на трудовую деятельность, получение профессии, личностное
- самовыражение в продуктивном, нравственно достойном труде в российском обществе; готовность к активному участию в решении возникающих практических трудовых дел, задач технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такого рода деятельность;
- умение ориентироваться в мире современных профессий;
- умение осознанно выбирать индивидуальную траекторию развития с учётом личных и общественных интересов, потребностей;
- ориентация на достижение выдающихся результатов в профессиональной деятельности;

экологического воспитания:

- воспитание бережного отношения к окружающей среде, понимание необходимости соблюдения баланса между природой и техносферой;
- осознание пределов преобразовательной деятельности человека.

Формы воспитательной работы

Мероприятия, которые проводятся для реализации воспитательной направленности дополнительной общеобразовательной общеразвивающей программы.

Данная программы предполагает реализацию следующих воспитательных мероприятий, таких как родительское собрание, экскурсии в структурные подразделения, факультеты университета (-ов), экскурсии на предприятия, внутренние и внешние конкурсные мероприятия и олимпиады. Практическую направленность программе придают такие формы воспитательной работы, как беседы, дискуссии, работа над проектом, совместное обсуждение результатов.

Методы воспитания

- 1. Методы формирования сознания: беседы о целях каждого обучающегося и сформированной команды, лекция о 3D-печати, 3D-моделировании.
- 2. Методы организации деятельности и формирования опыта общественного поведения.
- 3. Методы стимулирования поведения: соревнования (командный и индивидуальный формат), поощрение за лучшие результаты.
- 4. Методы контроля, самоконтроля и самооценки: беседы, практические задания, анализ результатов деятельности.